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For zero energy, E = 0, we derive exact, classical solutions for all power-law potentials, V(r) =
—v/r¥, with ¥ > 0 and —co < ¥ < co. When the angular momentum is nonzero, these solutions lead
to the orbits p(t) = (cos{u[p(t) — wo(t)]})*/#, for all 4 = v/2 — 1 # 0. When v > 2, the orbits are
bound and go through the origin. This leads to discrete discontinuities in the functional dependence
of ¢(t) and po(t), as functions of ¢, as the orbits pass through the origin. We describe a procedure
to connect different analytic solutions for successive orbits at the origin. We calculate the periods
and precessions of these bound orbits, and graph a number of specific examples. In addition to the
special ¥ = 2 case, the unbound trajectories are also discussed in detail. This includes the unusual
trajectories which have finite travel times to infinity.

PACS number(s): 03.20.+i, 03.65.Sq, 46.10.+z

I. INTRODUCTION

Since the birth of quantum mechanics, studying the
connections between classical and quantum physics has
been an enormous industry [1-3]. Both the intuitive and
the analytic aspects have been studied. In particular,
one can observe a kind of “Folk theorem.” Problems that
are amenable to well-defined, exact, analytic solutions
tend to be solvable in both the classical and the quantum
regimes.

For example, the fundamental three-dimensional prob-
lems of quantum mechanics, the harmonic oscillator and
the hydrogen atom, are those classical problems which,
by Bertrand’s theorem [4], have exact, closed orbits for
all energies. The standard, one-dimensional, quantum-
mechanical potential problems that are exactly solvable,
such as the Morse [5], Rosen-Morse (6], and P&schl-Teller
[7] potentials, are also solvable classically [8-10]. Further,
it has even been shown that quantum problems which are
solvable, but have certain “mathematical diseases,” man-
ifest these diseases already in the classical problem [11].

Usually, when one solves a potential system, one takes
a particular potential from a family and solves it for all
values of the energy, E. Here, we are going to do the
opposite. We will consider the entire class of power-law
potentials, parametrized as

V(r):—lz Y

v -1'2“+2 ) Y >0 )

—o<vr<oo,

1)

and exactly solve it for all v with the particular energy
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E = 0. Note that it will be useful to switch back and
forth between the variables v and p, related by

n=(v-2)/2, v=2(p+1). (2)
The potentials (1) are attractive for v > 0 and repulsive
for v < 0. For v = 0, the potential is a constant, V(r) =
—=, so the particle is force-free.

The above system is exactly solvable in both the clas-
sical and quantum-mechanical cases, and there are simi-
larities in the properties of the solutions. In the present
paper we shall discuss the very unusual and enlighten-
ing classical solutions. Elsewhere [12] we will solve the
quantum problem and discuss the wave functions.

The main body of this paper concentrates on the inter-
esting general solutions, with nonzero angular momen-
tum. (In the Appendix we give, for completeness, the
simple solutions for zero angular momentum.)

We begin, in Sec. II, by first defining the units which
allow us to simplify the equations and their solutions.
Then we derive the general E = 0 solutions, using two
methods. In Sec. III we investigate the general proper-
ties of the bound orbits, v > 2 or u > 0, such as their
precessions and periods.

Continuing, in Sec. IV we graphically depict examples
of the bound orbits, thereby demonstrating the general
properties derived previously. For v > 4, the typical
solution looks like a flower with several petals. A single
orbit describes what we will call a “petal.” It starts at
the origin, goes out to r = a, and returns to the origin.
The following orbits then go on to describe further petals
which in general are precessed from each other. After a
number of petals, the trajectory closes if v is a rational
fraction. The petals are very thin for large v, but become
wider and wider as v decreases from infinity. When v = 4
the orbit does not precess. It describes a circle which
goes through the origin and continually repeats itself.
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For 4 > v > 2, the orbits become tighter and tighter
spirals in and out of the origin as ¥ — 2. Once again, for
v being a rational fraction, the orbits eventually close on
themselves.

It is to be emphasized that the joining of the successive
orbits at the origin, as described above, demands special
attention. This is because the potential is singular at the
origin. Conservation of linear and angular momentum is
used to impose physical boundary conditions.

In Sec. V we discuss the special v = 2 case, which is a
boundary case between bound and unbound trajectories.
The classically unbound trajectories, given by v < 2, are
covered in Sec. VI. We close with a discussion, and defer
comparisons between the classical and quantum problems
to Ref. [12].

II. GENERAL SOLUTIONS

A. Classical turning point as a unit of length

Power-law potentials do not have a built-in length
scale. Therefore, it is convenient in our £ = 0 case to
define a length scale, a, to be the radius of the turning
point. This is the radius at which the effective potential
vanishes:

L? 07
U(L,T)ZW_;; (3)
L2 1 1
——m(;g—;;) ’ p= = (4)

N o1

where a is determined by the condition U(L,a) = 0:

1 1
2mey \ 2+ 2my v 2
a=(L2> =(L2> , v#£E2, pu#0.

(5)

Note that in these units, V is given by

2
Vr)=-2L = L” 1 _

L2%a¥2 1
rv 2ma? p¥ 2m

el (6)

B. From the orbit equation

A direct, mathematically inspired solution can be ob-
tained by integrating the orbit equation [13, 14]

r~ldr

‘P_%:/ro JEE-V)r -1 ' g

The general solution has the constant g in it. We pre-
sciently set g = 0 when p = 1 (the turning-point con-
dition), so that the turning point is along the positive z
axis.

Then, setting £ = 0 makes the integral (7) doable for
all v. Changing variables successively to p = r/a, y = p*,
and = = cos™!y means that Eq. (7) can be written as
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_ /P p=1) dp 2 Y dy
o= —_
1

\/l—pzi‘_ﬂ 1 1-—y2

-1

cos™ly
= —,u_l/ de . (8)
0

Therefore, the solution is

p* =y = cos (—puyp) = cos (up), (9)

p= [cos ((V—_;)i)] . [cos (ue)]"/%.

We will discuss the allowed angular variations of ¢ in the
separate sections on bound and unbound orbits.

(10)

C. From the energy-conservation equation

We now give a more intuitive derivation of the solution
(10). By substituting the angular-momentum conserva-
tion condition

¢ = L/(mr?) (1)
into the energy-conservation condition
m dr\?
E=T+V=?¢2|:<%> +r2}+V, (12)
one obtains [15, 16]
2
(3—;) +r2= —————2m(EL_2 vt (13)

This is essentially a first-order differential equation,
which can be formally integrated to yield the angular
equation (7) of the last subsection.

However, for £ = 0, it is much more efficient to solve
Eq. (13) directly. Converting to the dimensionless vari-
able p = r/a and substituting V from Eq. (6) into Eq.
(13), we obtain

d 2
(_P) 4 p? = pla) = 22w

i (14)

For v = 4 the right-hand side of this equation is unity,
so the solution is a cosine. This is the circular orbit
p = cosp which we will discuss in detail in the next
section. Guided by this and the substitution y = p* of
the last subsection, we multiply Eq. (14) by p?*~2 to
yield

_1dp? dpt \? 2
p—12F 2 w2 — 1 .
(p d(p) +p (#d(p + (p*)

Now p* satisfies the differential equation for the trigono-
metric functions. Therefore, the general solution of Eq.
(15) is given by

(15)

p* = cos{ u(p — o)} = cos [1—2-—2(90 - (po)] , (16)
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or

p=cos{u[(w — wo)l}*/* 2
(e

The phase, ¢o, is the integration constant. It depends
on the initial conditions and, as before, we will set (g to
zero for our first-orbit turning-point condition.

III. PROPERTIES OF THE BOUND
TRAJECTORIES: 2<v OR 1< pu

In Fig. 1 we show a typical effective potential U(r) in
this regime. One sees that the value of U(r) starts from
—oo at r = 0, rises through zero at » = a, reaches a max-
imum, and then decreases to zero at » — co. Therefore,
the E = 0 solution for r = r(t) can only vary between
r = 0 and 7 = a. We shall now discuss the dependence
of 7 on the azimuthal angle, .

A. The first orbit

The radius, p, is non-negative. This means the range
of the angle variable for the first orbit is restricted. Since,
by convention, the first orbit has po = p}§ = 0, this means

@' = @ satisfies

—_— = <p'< =_—. (18)

The corresponding curve p = p(yp!) in the z-y plane
begins at p = 0 for ¢! = —7/2u = —7/(v — 2), evolves
counterclockwise to p = 1 at ¢! = 0, and then continues
on back to p =0 at ¢! = n/(2u) = 7/(v — 2). The curve
evolves counterclockwise because we have chosen, by con-
vention, that the angular momentum is in the positive z
direction. (Of course, there is also a mathematically ro-
tated clockwise solution.)

Every such closed circuit, beginning and ending at the
origin, we will call an orbit. Because of the shapes of the
orbits (which we will present in the next section), when
v > 4 we will also call an orbit a petal (of a flower) and
when v < 4 we will also call an orbit a spiral, which

0.2
0.1
U(p) 2 ) 6 8
-0.1 P
-0.2
FIG. 1. For v = 4 a plot of the effective potential, U, as

a function of p. [See Eq. (3).] U(p) = [1/p* — 1/p%].
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actually is a double spiral since it spirals out and then
spirals in. These two classes of orbits meet at v = 4,
which is the circle that goes through the origin. As we
will see below, the entire physical trajectory will consist
of a pattern of either (i) a finite integral number of orbits
which then repeat over themselves, when p is a rational
number, or else (ii) an infinite number of nonrepeating
orbits, if 4 is an irrational number. (In Sec. VI we will
discuss the classically unbound orbits described by v < 2
or u<1.)

B. Solutions for later bound orbits
1. The angles and the phase shifts

To obtain the entire physical solution, we must con-
nect different orbits. That is, the first orbit evolves into
the second orbit...evolves into the kth orbit. Because the
orbits go through the origin, both ¢ and ¢q are discon-
tinuous, as we will demonstrate below. Therefore, we will
label ¢ and g for the kth orbit as ¢* and ¥, respec-
tively.

The successive orbits must be connected at the origin,
r = 0. How this is done is a choice of boundary condi-
tions at the singularity and affects the resultant physics.
(This is similar to how the quantum choice of boundary
condions will lead to different self-adjoint extensions of
the Hamiltonian. See Ref. [12].) One could, for example,
take the conditions to be a hard core reflection.

However, we choose as the appropriate physics that
the directions of the linear momentum P and the angular
momentum L are continuous functions of time. We de-
fined the first orbit to have its apogee, r = a, at ! =0,
which corresponded to the choice ¢} = 0. In order to
obtain this physical solution, we must connect the first
orbit to the second orbit in such a way that the tangent
vector to the combined trajectory is continuous at the
origin.

Before the particle starts the second orbit, the tra-
jectory goes though the origin. This creates a singular
transition in the polar coordinates. (Since the trajec-
tory passes through the origin and because p must be
continuous, the direction * of the position vector must
change sign at 7 = 0.) The angle advances by 7 (in-
stead of —7) in going through the origin because, in or-
der to conserve angular momentum, the position vector
must continue rotating in the counterclockwise direction.
Then the particle begins its second orbit, traveling an-
other angular distance w/y. Before beginning its third
orbit, the particle goes through the origin again, advanc-
ing another 7 radians. Therefore, the angular variation
of the kth orbit, ¢*, is given by

Proin = (Lk—:;@+(k—l))ws<pk

(B2 -n)r=he 09

and one has the condition

Pt = ok 4T (20)
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However, the phase shift, ¢k, must also change with
each orbit. Recall, in summary, that the kth orbit is
described in polar coordinates by

pr = [cos{u(p* — §)}"/* , (21)
with

lo* — o5l < 7/2p (22)
or, equivalently,
D k ko, T _ &
L= - —< < = . 23
‘pmln Yo 2/1' S s ¥o + 2/1' <pmax ( )
Then, from Eqgs. (19) and (23), the phase shift, ¢Z, is

<p1,'cnin + (pfnax

6 = 5
=(k—1)<$)7r
=(k—1)(1+£)7r. (24)

Mathematically this change of phase shift, <p’(§, with
each orbit is because the orbit must be symmetric about
any apsidal vector [17]. This is true even though the
vector is zero length from the origin. (See the interesting
application of these concepts in the v = 6 orbit discussion
of the next section.) Further, the other apsidal vectors,
ri(p® = k), are the symmetry axes of the kth orbits.

2. Angle vs phase-shift differences

It is instructive to observe that, instead of using the
label, k, for each orbit, formally we can write the general
solution for all times ¢ > 0 in the form

p(t) = (cos{ulp(t) — wo()])* = [cos ux(t) 1'/* ,
(25)
with
x(t) = ¢(t) — po(t) - (26)

Here, both the azimuthal angle, ¢, and also the phase
shift, oo, are regarded as functions of time. These angles
have discrete jumps at the crossing times

tr = (k—1/2)1 (27)

where the t; are the times at which the particle passes
through the origin and 7 is the period of one orbit. Using
our same physical convention, which here is r(0) = a at
t = 0 with ¢(0) = ¢o(0) = 0, we have that the jumps are

Pt +€) =t —€) +m (28)
and

po(t) == (1 + %) Z Ot —tx) , (29)
k=1

where O(t) is the Heaviside step function.
We see that both ¢ and o are monotonically increas-
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ing functions of time. In contrast, their difference, x(t),
is a periodic function of ¢. For every new orbit, x starts
with the value —m/(24) and then increases monotonically
to 7/(2p), due to the continuous increase in ¢(t) as the
particle goes through one orbit (petal or spiral). Next, x
decreases stepwise by 7 /u at the crossing time. There-
fore, as in our previous representation, cos ux starts and
ends each orbit at p = 0.

C. Precession of the orbits

Because of angular-momentum conservation, the az-
imuthal angle, ¢, is a monotonic function of time, ¢t. If
there is no precession, ¢ increases exactly by 2m after one
period, 7. However, if after one period the axis of the or-
bit has rotated forwards or backwards (i.e., clockwise or
counterclockwise) from 27 by an angle P,, then this is
the precession per period. Specifically,

pt+7)—plt)=2r+P,, (30)

where 7 is the period of one orbit. If we choose ¢ to
be the time at which the particle was at the apogee of
the kth orbit, then ¢t + 7 will be the time at which the
particle reaches the apogee of the (k + 1)th orbit. To
do this, the particle must first rotate by n/2u to reach
the origin, have its angle ¢ jump by 7 at the origin, and
finally rotate by another w/2u to reach the new apogee.
Thus, from Eq. (30) we have

T ™

pt+r)=e(t) = 5+t

(l+1)7r=27r+P,,,
u

(31)

so that

o) ()

In Fig. 2 we plot P, as a function of v. The precession
is infinite at v = 2, decreases through zero at v = 4, and
asymptotes to —m as v goes to infinity. Therefore, the
precession will be zero for v = 4, negative (counterclock-
wise) for v > 4, and positive (clockwise) for v < 4.

This also demonstrates that, for v equal to a rational
fraction, the orbits will eventually close on themselves,
and repeat. This happens when kP, is an integer times
2.

D. Classical period

The classical period, 7, can be obtained by integrating
the angular-velocity equation

dp L _ 1

- _ = 33
dt mr2  Top2?’ (33)
where 7¢ is a convenient unit of time,
2
ma
o = 34
0= ™ (34)

One then has that the classical period in units of 7g is
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FIG. 2. A plot of P,, the precession per
orbit, as a function of v.

- / " feos(lule) (%) dy . (35)

N
®

[In Eq. (35) we have inserted absolute values around u in

B(b,c) = T'(b)I'(c)/T'(b + ¢) is the beta function and we
used I'(1/2) = /m. We see that T, is finite and well
defined for ¢ > 0 or v > 2, as would be expected for
bound orbits.

In Fig. 3 we plot T, as a decreasing function of v.
From Eq. (37) special cases are

1/2
the arguments of the integral and integrand. This allows lim Ty = 27 / (39)
us to include the negative y case that we will return to o 2te € ’
at the end of this discussion.] 3w
Changing variables to z = |u|¢ allows the integral to Is= 1
be evaluated as [18] ™
Ty= -,
2 z 2 1 2
T, = ~/ cosz](2) de = L B(1/2, b) (36) Te=1,
1l Jo |12 . 27
lim T, =— .
v—o00 14
= vr_ T(b) . b>0, (37)  The first equality in Eq. (39) is obtained by using [19] the
|| T(b+1/2) relation I'(z + 1/2) ~ I'(z)+/z, which holds for |z| — oo.
where In passing, note that Egs. (37) and (38) also tell us
that 7, is finite and well defined for the unbound, infinite
b= 1 + 1 -zt 2 >0. (38) orbits corresponding to 4 < —2 or ¥ < —2. This means
u o 2 2v-4 that it takes a finite time for the particle to travel in from
10
s}
6 F
T(V) FIG. 3. A plot of the dimensionless or-
4 bital period T, = 7., /70 as a function of v.
2
0 2 4 6 SL 1‘0
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infinity, reach the turning point r = a, and then go back
to infinity.

IV. EXAMPLES OF CLASSICAL
BOUND TRAJECTORIES

A. Petals: v >4o0orp>1

From the preceding section we see that, as v ap-
proaches infinity, the orbit is an ever-narrowing petal of
width

? == : (40)

Similarly, the counterclockwise precession reaches —m per
orbit as ¥ — 0o. As v becomes smaller, the petals in-
crease in width. We illustrate this with several illumi-
nating examples.

v = 8, three petals. We begin with the case v = 8. Here
a petal is 7/3 wide and the precession per orbit is —27/3.
Thus, there are three orbits before the trajectory closes.
Note that the three petals in a closed trajectory cover
only half of the opening angle from the origin. We show
this in Fig. 4.

v = 7, ten petals. For v = 7 a petal is 27/5 wide
and the precession per orbit is —3x /5. This means that,
before the trajectory closes, there must be ten orbits and
the precession goes around three times.

v = 6, perpendicular lemniscates. The case v = 6 is
very interesting. The width of a petal is 7/2 and the
precession is —7 /2 per orbit. Here, the width of a petal

1

3rd
0.
first
-1 0.5

2nd

-1

FIG. 4. The first three orbits for v = 8 or ¢ = 3. Each

orbit is precessed —2m/3 from the previous one, so that by
the end of the third orbit, the trajectory closes. In this and
later figures, the radius is in the dimensionless units of p. For
orientation, we show the dimensionless Cartesian coordinates.
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FIG. 5.

The first four orbits for v = 6 or 4 = 2. Each
orbit is precessed —7 /2 from the previous one, so that by the
end of the fourth orbit, the trajectory closes.

and the precession are exactly such that there is no over-
lap and also no “empty angles.” It takes four orbits to
close a trajectory. This is shown in Fig. 5. We see that
the physical solution consists of two perpendicular lem-
niscates (figure-eight curves composed of two opposite
petals). This conclusion is in contradiction to one given
in the literature [20]. There, a single lemniscate was
predicted. From the physical arguments we have given

-0.5

FIG. 6. The orbit for » = 4 or 4 = 1. It is a circle, and
repeats itself continually.
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0.5

"

FIG. 7. The first two orbits for » = 3 or p = 1/2. Each
orbit is precessed m from the previous one, so that by the end
of the second orbit, the trajectory closes.

above, this is not valid. This incorrect solution resulted
from studying the equation for the square of the orbit.

v = 5, siz overlapping petals. The petals are 27 /3 wide
and they precess by —m/3 per orbit. This means there
are six petals in a closed trajectory (flower). Note that
here a petal is still so wide and the precession is so small
that the successive petals overlap.

B. Circle through the origin: v =4 or p=1

For v = 4, the solution is well known [21]. It is a circle
that starts at the origin, travels symmetrically about the
positive x axis, and returns to the origin. The precession
is zero, so the orbit continually repeats itself. In Fig. 6
we show the orbit.

C. Double spirals: 2 <v <4or0< pu<l1

As v becomes less than 4, we can think of a petal
obtaining a width greater than =, i.e., an orbit consists
of two spirals, one out and one in, at opposite ends of
the orbit. As v approaches 2, the spirals become tighter
and tighter and the precession (now clockwise) becomes
larger. In fact, the spirals’ angular variation as well as
the orbit’s precession both become infinite in magnitude

FIG. 8. The first two orbits for v = 7/3 or u = 1/6. Each
orbit is precessed 57 from the previous one, so that by the
end of the second orbit, the trajectory closes.
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i
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-0.0003"
0.2
0.005 0.01 <015 (d) 0.1
-0.003
© Z0a T0.2
FIG. 9. Close-up details of the beginning of the first orbit

for v = 7/3 or p = 1/6. The orbit starts at ¢ = —3mw. The
four graphs show the evolution for (a) —37 < ¢ < —2.91m,
(b) =37 < < —57/2, (c) =37 < ¢ < —2m, and (d) —37w <
p< -7

as v approaches 2.

Consider the special case v = 3. The width of the
double-spiral orbit is still given by the formula for ®,,
and is 2m. Therefore, the first orbit begins and ends
towards the negative x axis. The precession is 7, so the
trajectory closes after two orbits. We show this case in
Fig. 7.

When v = 7/3, the width of the double spiral is 6.
This means the first orbit starts towards the negative x
axis, winds around one and a half times before reaching
the positive axis, and then winds one and a half times
more to reach the origin again. The precession is 57, so
the trajectory closes after two orbits. We show this case
in Fig. 8. However, on this scale it is impossible to see the
tight winding of the spirals near the origin. Therefore,
we demonstrate it with expanded views in Fig. 9.

As v — 2 from above, the spirals get tighter and
tighter. Their angular widths, ®, = 27 /|v — 2|, become
larger and larger as v — 2.

V. THE BOUNDARY BETWEEN UNBOUND
AND BOUND CLASSICAL TRAJECTORIES:
v=20R pu=0

For v = 2 or p = 0, there is no natural length scale.
Both the external and the centripetal potentials have the
same power dependence on 7, so that the effective poten-
tial of Eq. (3) is

U(r) = (I/2m — ) - (41)

We have three distinct physical situations depending on
whether L2/2m > «, L?/2m = v, or L?/2m < . Then
for all r the effective potential U(r) is either repulsive
(and positive-valued), identically zero, or attractive (and
negative-valued).

For U(r) > 0 there is no solution for E = 0. For
U(r) = 0 the orbit is a circle, which we discuss in the
next subsection. Finally, for U(r) < 0, the solution is an
infinite spiral described in Sec. V B.
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A. The circular bound orbit: » = a

For U(p) = 0, Eq. (14) yields dp/dy = 0. The solu-
tion is a circle, r = a or p = r/a = 1, whose radius is
determined by the initial conditions.

This particular solution also follows from our general
solution (10) by taking the p — 0 limit. The value of the
limit, which is

. E
lim (cos pp) =1, (42)
can be obtained from
1
lim In(cos ;1,<p)f17 = lim In(cos pp)
n—0 p—0 “

T e
= lim © (47?2 4-) 5 0. (43)

Physically we know that this orbit has a finite period,
since the period is the time it takes the particle to rotate
from ¢ = 0 back to the same physical point when ¢ = 2.
Even so, the formula for 7, yields infinity in the limit
p# — 0. The reason is that as v — 2 from above, the
orbit is a double spiral that winds more and more times:
i.e., ®, — oo. The windings get closer and closer to the
circle p = 1. In effect, v = 2 can be considered as the
limit when the infinite number of windings all overlap the
circle.

B. The unbound infinite spiral

For U(r) < 0 the result cannot be regarded as a special
case of the general solution (17). This is not unexpected
since the general solution satisfies the initial conditions
r(0) = a and dr(0)/de = 0. This means r = a is a turn-
ing point. However, for U(r) < 0 these conditions can
never be satisfied. [See Eq. (45) below.] Nevertheless,
there is a different and interesting F = 0 solution, as we
now show.

Since U < 0, the energy-conservation condition (12)
for £ = 0 gives

2

(%) = (2my/L? — 1) r® = A%r? | (44)
so that

dr/dp = FAr . (45)

Therefore, the two possible solutions are

r =719 exp [FA (¢ — ¢o)] , —c0 < p<0oo. (46)
These correspond to orbits which pass through the point
(ro, o) and spiral inwards or outwards for the minus
or plus signs, respectively. For example, a complete,
counterclockwise orbit, starting from the initial value
7 = 7Tin = 7(in), going into the origin, and then going
out of the origin towards the final value r = ry = r(py),
is given by

r
— =exp [-A (¢ — ¢i)] , pin <p<oo, (47)

m

T
o = oxP [+X (¢ — 5], —o0 < ¢ < 5. (48)
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However, it is important to note that Eqgs. (47) and (48)
are only special cases of Eq. (46). For example, Eq.
(46), with the plus sign, can also describe an r starting
at (o) = ro which then goes out to infinity as ¢ — co.
Despite the infinite spirals in the example of Egs. (47)
and (48), the journey in and out takes only a finite time.
To see this, consider the time dependence of . From the
energy-conservation conditions (12) and (44), we have

o2y LB L amy N1 (LML
mr2 m?r2 m2\ L2 r2 m ) r2’

(49)
Therefore,
dr? . 2L\
and
2L\
7'2 ZTS:F ——Tn—(t—to) . (51)

This tells us that, in spite of the infinite spiraling, a par-
ticle moving nwards reaches the origin, » = 0, from any
point 7o in a finite time, given by

At=t—to 2 (52)

T 2Lx O

Finally, substituting Eq. (46) into Eq.
general time dependence of ¢ as

(51) gives the

mrd
2L\

{exp[F2A(¢ —po)] -1} .

(53)

m
(r*—rg) = F

t—tg = q:m

Because of our choice I, = 2, in Eq. (53) we are assuming
that ¢ increases monotonically with time.

(The v = 2 case is special in another way. For v = 2
and E # 0, it is the demarcation between the £ < 0
bound solutions and £ > 0 unbound solutions. These
latter are Cotes’ spirals [22]. The E # 0 solutions are
given in Refs. [23,24].)

VI. UNBOUND TRAJECTORIES:
v<2O0R u<0

A. Properties of unbound trajectories

When the potential parameter v becomes smaller than
2, that is, when v < 2 or u < 0, there is another change.
It is as if the “infinite overlapping circle” solution for
v = 2 breaks, and the two ends spiral out to infinity
from the point p =1 and ¢ = 0.

As the value of v decreases, the value of the angular
width of the trajectory, now given by &, = n/|u|, also
decreases accordingly. By the time v = 1, the angular
width has decreased to 2w. Eventually it becomes less
than 7, meaning the orbit comes in and out in the same
half-plane. That is, when v < 0, the force is repulsive.
In the next section we give some illustrative examples.
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0.2 1 1
= (COS (p/2)2 = ~————————+ cos® . (55)
P 2
0-1 This is the famous parabolic orbit for the Kepler problem
with £ = 0. This orbit is shown in the first drawing of
U(p) 5 2 3 % Fig. 12. The parabola yields an angular width of 27, as
it should.
-0.1
C. The straight line: » =0 or 4 = —1
-0.2
If we formally set ¥ = 0 in expression (1), we get a
negative constant potential V(r) = —«. Therefore, in
this case the force vanishes and we have a free particle.
FIG. 10. The effective potential, U(p) = 1/p* —1/p, as a  Its orbit must be a straight line,

function of p.

B. Kepler-like potentials: 0 < v <2o0r —1 < u<0

When 0 < v < 2, the repulsive centripetal barrier
dominates at small » whereas the attractive potential
V = —«/r” dominates at large r. A typical shape of the
effective potential is sketched in Fig. 10. It is familiar
from the Kepler problem. Therefore, for 0 < v < 2, the
E = 0 classical orbits are all unbounded. The distance,
a, defined in Eq. (5) now has a completely different in-
terpretation. It is now the distance of closest approach.
Even so, the formal solution (16) remains valid for nega-
tive values of u.

As a first example consider the case v = 3/2 or
p = —1/4. This orbit has a total angular width of 4.
It is shown in the two drawings of Fig. 11. The large-
scale first drawing shows the trajectory coming in from
the top, performing some gyration, and going out at the
bottom. The small-scale second drawing shows the tra-
jectory winding around twice near the origin, with the
distance of closest approach being one.

A second example is the exact Kepler potential, v = 1
or u = —1/2. Equation (16) gives

pH? = cosp/2, (54)

so that

p=[cosp]™t, T=rcosp=a. (56)

This is the equation for a vertical straight line that
crosses the = axis at £ = a, as required by the initial
conditions. This orbit is shown in the second drawing
in Fig. 12; it subtends an angular width of m from the
origin.

D. Repulsive potentials: —oco < v <0
or —co< pu< —1

For v < 0 the potentials V(r) in Eq. (1) are repulsive
and negative-valued for all » > 0, with V(r) going to
—oo at large distances. Since both the potential, V (r),
and the centripetal potential decrease monotonically, the
effective potential has no minima or maxima. Even so,
for E = 0 these unbounded orbits behave qualitatively
like those for 0 < v < 2. The distance of closest approach
again obeys the formula (5) and the solutions are given
by the same expression (16), which is valid for all u # 0.

The solution (16) for the first orbit (¢3 = 0) gives

p = [cos up]** = [cos |u|p]"HIH! (57)

This shows that the particle is at 7 = a when ¢ = 0 and
it is at infinity when ¢ = +n/(2|p|). Thus, these orbits
become narrower as |u| becomes larger. This is similar
to the case of the width of the petals of the bound orbits.

Hyperbolic orbits. The most famous special case of
these potentials is the “inverted” harmonic-oscillator po-

FIG. 11. A large-scale view, and a small-

-500 \500 e %

-500 -10

10 scale view near the origin, of the trajectory
forv=3/2o0r p=1/4.
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FIG. 12. From left to right, the trajectories for the cases
v=lorp=-1/2;v=00rpu=-1;v=—2o0r g = —2; and

v = —4 or p = —3. The curves are labeled by the numbers v.
tential, with ¥ = u = —2. The orbit is given by
p = [cos2¢]~1/2 | so that
2 2 2 2
r r . 2 z y
1=E§cos2go=a—2(cosz<p—sm <p)=a—2——§. (58)

Thus, the trajectory is a special hyperbolic orbit, whose
minor and major axes are equal, b2 = a2. (In fact, every
v = —2 solution, i.e., for arbitrary F # 0, also yields a
hyperbolic orbit, but with b # a.) We show this orbit as
the third drawing in Fig. 12. Now the angular width has
decreased to m/2.

As the last case, we consider the orbit for v = —4
or 4 = —3. This orbit is shown in the last drawing of
Fig. 12. The orbit subtends an angle of 7/3, again as
it should. One sees that as v becomes more and more
negative, the orbits will become narrower and narrower.
This is just as in the bound case, where the petals be-
came narrower and narrower as v became more and more
positive.

VII. DISCUSSION
A. Partner trajectories

The v = 2 or p = 0 circle (r = a) is the borderline
between the bounded (0 < 7 < a) orbits for v > 2 or
p > 0, and the unbounded trajectories (a < r < oo) for
v < 2 or 4 < 0. Moreover, because of the relation

1
p(—p, ) = o) (59)

we can associate with every bounded orbit, which corre-
sponds to p > 0 and lies on and inside the circle r = a
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or p = 1, an unbounded counterpart, which belongs to
negative p and lies on and outside the circle. Since the
opening angle of both of these trajectories is

Tl

we call the members of these pairs partner trajectories.
The 4 = 0 or v = 2 circle p = 1 is the only trajectory
which has itself as a partner. In our figures we have four
examples of partner trajectories: (1) The first orbit for
p# = 3 or v = 8 in Fig. 4 is the partner trajectory to
the p = —3 or v = —4 trajectory in Fig. 12. (2) The
first orbit for 4 = 2 or v = 6 in Fig. 5 is the partner
trajectory to the hyperbola u = —2 or v = —2 trajectory
in Fig. 12. (3) The circle for 4 = 1 or v = 4 in Fig. 6 is
the partner trajectory to the 4 = —1 or v = 0 straight
line in Fig. 12. (4) The first double spiral for p = 1/2
or v = 3 shown in Fig. 7 is the partner trajectory to the
trajectory p = —1/2 or v = 1 shown in Fig. 12.

) (60)

v =

B. Comments on the classical problem

It is well known that classical orbits precess for gen-
eral central potentials. There are two exceptions, the
Kepler and the isotropic harmonic oscillator potentials
[4]. Further, these central potentials are known to have
additional conserved quantities: the Runge-Lenz vector,
A, in the Kepler problem and the quadrupole moment
tensor, Q;;, in the harmonic oscillator problem [25, 26].
These two examples show that there is a close connec-
tion between the absence of precession and the existence
of dynamically conserved quantities.

On the other hand, it is also well known that for a spe-
cific energy to angular-momentum combination, general
central potentials can have closed orbits. But these com-
binations have different unique values, depending upon
the potential.

Therefore, it is interesting that the class of E = 0 so-
lutions for the potentials (1) with » > 2 have a countable
number of examples with well-defined, closed trajecto-
ries. They are all the potentials with rational values of
v. One of them, the case v = 4, has zero precession.

All the E = 0 with v > 2 solutions are bound and go
through the origin. The v < 2 solutions are unbound,
and go to infinity. (The v = 2 case is special, and does
both.)

We have seen that, with the v > 2 singular potentials,
the physical solutions differ from more familiar solutions
in that, at the origin, we must paste together single-orbit
solutions which have different phase shifts, ¢, at r =
0. The discontinuity at the origin of the phase shifts,
given by Eq. (29), is fundamental [27]. It is necessary
because the bound orbits pass through the origin, where
the potential is singular. This causes the second order
time derivative of the position, i.e., the acceleration, to
be infinite at » = 0 when v > 2:

vy
'mru+2

.’L',(t) = — Z; , = 1,2,3 . (61)

Therefore, irrespective of what coordinate system we
choose, at the origin we must still paste together dif-
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ferent solutions of Newton’s equation which depend on
different initial conditions, as exhibited in Eq. (21).

As we have just observed, when crossing the center
of singular potentials, a particle will have infinite mo-
mentum and kinetic energy. This leads to a violation
of the virial theorem, even for these bound trajectories.
Formally applying the virial theorem [28, 29] to power
potentials leads to the following well-known equation:

(T) = —2(V) (62)

where (T') and (V) are the time averages of the kinetic
and potential energies. The above equation leads to two
famous relations: (T) = —(V')/2, for Kepler elliptical or-
bits (F < 0 and v = 1), and (T) = (V') for the harmonic
oscillator (E > 0 and v = —2).

From Eq. (62) and energy conservation, we have

E=T+V=(T)+<V)=(1—§)(T). (63)

Since (T) > 0, Eq. (63) immediately shows that the
virial theorem (62) is violated by all the E = 0 solutions
of power potentials with v # 2. Such a violation of (62)
is expected for infinite orbits, such as the parabolic orbit
of the Kepler problem and all other £ = 0, v < 2 orbits.
What is of more interest is that the bound solutions,
v > 2, also violate the theorem.

In summary, the classical £ = 0 solutions for the
power-law potentials exhibit a fascinating set of prop-
erties. In Ref. [12] we will show that this characteristic
is also true for the quantum solutions.

APPENDIX A: ZERO
ANGULAR-MOMENTUM SOLUTIONS

Here we discuss the simpler E = L = 0 solutions,
where the effective potential U(r) is equal to the potential
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V(r) itself. A particle moves radially, in a straight line,
between zero and infinity, with no turning points at any
finite radius, r # 0.

From the energy-conservation equation (12) one has
that, for E =L =0,

dr 29\? 1
Unless v = —2 this is equivalent to
d(r)u/z+1 3 2y 1/2
vzra . T \m) (A2)
which has the solutions
1/2 =
_ |5 2y v _
r(t) = l:ro + (m (3+1)¢-t)|
v#-2, (A3)

where ro = r(to).
The special case v = —2 yields the differential equation

dr 2y 1/2
The solutions are therefore
2 1/2
’I'(t) =T €Xp :t (E) (t - to):l
Vo
=7o exp [(—-) (t— to)] . (A5)
To

(The exponential solution (A5) follows from the general
solution (A3), by using lim._,o(1 + €z)'/¢ = exp[z].)

For this L = 0 case, the complete journey from the
origin to infinity takes an infinite amount of time for all
indices —oo0 < v < oo.
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